Jv

J.T. van Velthoven

13 records found

On a homogeneous group, we characterize the one-parameter groups of dilations whose associated Hardy spaces in the sense of Folland and Stein are the same.
This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters p∈ (0 , ∞) , q∈ (0 , ∞] and α∈ R. The equivalent norm is defined in terms of the decay of wavelet coefficients, ...
This paper provides a characterization of expansive matrices A∈ GL (d, R) generating the same anisotropic homogeneous Triebel–Lizorkin space F˙p,qα(A) for α∈ R and p, q∈ (0 , ∞] . It is shown that F˙p,qα(A)=F˙p,qα(B) if and only if the homogeneous quasi-norms ρA, ρ
This paper concerns the overcompleteness of coherent frames for unimodular amenable groups. It is shown that for coherent frames associated with a localized vector a set of positive Beurling density can be removed yet still leave a frame. The obtained results extend various theor ...
Continuing previous work, this paper provides maximal characterizations of anisotropic Triebel-Lizorkin spaces F˙p,qα for the endpoint case of p= ∞ and the full scale of parameters α∈ R and q∈ (0 , ∞]. In particular, a Peetre-type characterization of the anisotropic Besov space B ...
This article considers the relation between the spanning properties of lattice orbits of discrete series representations and the associated lattice co-volume. The focus is on the density theorem, which provides a trichotomy characterizing the existence of cyclic vectors and separ ...
This paper provides sufficient density conditions for the existence of smooth vectors generating a frame or Riesz sequence in the lattice orbit of a square-integrable projective representation of a nilpotent Lie group. The conditions involve the product of lattice co-volume and f ...
We derive an extension of the Walnut–Daubechies criterion for the invertibility of frame operators. The criterion concerns general reproducing systems and Besov-type spaces. As an application, we conclude that L2 frame expansions associated with smooth and fast-decayin ...
Let G be a nilpotent Lie group and let π be a coherent state representation of G. The interplay between the cyclicity of the restriction πjΓ to a lattice ≤ G and the completeness of subsystems of coherent states based on a homogeneous G-space is considered. In particular, it is s ...
Let G = N ⋉ A, where N is a graded Lie group and A = R+ acts on N via homogeneous dilations. The quasi-regular representation π = indGA(1) of G can be realised to act on L2(N). It is shown that for a class of analysing vectors the assoc ...
Let πα be a holomorphic discrete series representation of a connected semi-simple Lie group G with finite center, acting on a weighted Bergman space Aα2(Ω) on a bounded symmetric domain Ω , of formal dimension dπα>0. It is shown that if the Bergman kernel kz(α) is a ...
This note provides new criteria on a unimodular group G and a discrete series representation (π, Hπ) of formal degree dπ> 0 under which any lattice Γ ≤ G with vol(G/Γ)dπ≤1 (resp. vol(G/Γ)dπ≥1) admits g∈ Hπ such that π(Γ) g is a frame (resp. Rie ...
This paper considers coorbit spaces parametrized by mixed, weighted Lebesgue spaces with respect to the quasi-regular representation of the semi-direct product of Euclidean space and a suitable matrix dilation group. The class of dilation groups that we allow, the so-called integ ...