Anisotropic Triebel-Lizorkin spaces and wavelet coefficient decay over one-parameter dilation groups, II

Journal Article (2023)
Author(s)

Sarah Koppensteiner (University of Vienna)

Jordy Timo van Velthoven (TU Delft - Analysis)

Felix Voigtlaender (Katholische Universität Eichstätt - Ingolstadt)

Research Group
Analysis
Copyright
© 2023 Sarah Koppensteiner, J.T. van Velthoven, Felix Voigtlaender
DOI related publication
https://doi.org/10.1007/s00605-023-01824-3
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 Sarah Koppensteiner, J.T. van Velthoven, Felix Voigtlaender
Research Group
Analysis
Issue number
2
Volume number
201
Pages (from-to)
431-464
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Continuing previous work, this paper provides maximal characterizations of anisotropic Triebel-Lizorkin spaces F˙p,qα for the endpoint case of p= ∞ and the full scale of parameters α∈ R and q∈ (0 , ∞]. In particular, a Peetre-type characterization of the anisotropic Besov space B˙∞,∞α=F˙∞,∞α is obtained. As a consequence, it is shown that there exist dual molecular frames and Riesz sequences in F˙∞,qα.