Classification of anisotropic Triebel-Lizorkin spaces

Journal Article (2023)
Author(s)

Sarah Koppensteiner (University of Vienna)

Jordy Timo van Velthoven (TU Delft - Analysis)

Felix Voigtlaender (Katholische Universität Eichstätt - Ingolstadt)

Research Group
Analysis
Copyright
© 2023 Sarah Koppensteiner, J.T. van Velthoven, Felix Voigtlaender
DOI related publication
https://doi.org/10.1007/s00208-023-02690-y
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 Sarah Koppensteiner, J.T. van Velthoven, Felix Voigtlaender
Research Group
Analysis
Issue number
2
Volume number
389
Pages (from-to)
1883-1923
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This paper provides a characterization of expansive matrices A∈ GL (d, R) generating the same anisotropic homogeneous Triebel–Lizorkin space F˙p,qα(A) for α∈ R and p, q∈ (0 , ∞] . It is shown that F˙p,qα(A)=F˙p,qα(B) if and only if the homogeneous quasi-norms ρA, ρB associated to the matrices A, B are equivalent, except for the case F˙p,20=Lp with p∈ (1 , ∞) . The obtained results complement and extend the classification of anisotropic Hardy spaces Hp(A)=F˙p,20(A) , p∈ (0 , 1] , in Bownik (Mem Am Math Soc 164(781):vi+122, 2003).