Assessing the Long-Term Performance of Adhesive Joints in Space Structures during Interplanetary Exploration
G.V.M. Charpentier (TU Delft - Structural Integrity & Composites)
Ugo Lafont (European Space Agency (ESA))
S. Teixeira Freitas (TU Delft - Structural Integrity & Composites)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Spacecraft experience minimal mechanical loads in space, but with the development of reusable spacecraft for interplanetary exploration and repeated landings, structures will be subjected to increased mechanical stress. The impact of the space environment on the aging of adhesive materials used in space structures over long-term applications is not well understood. This study investigates two commonly used adhesives in spacecraft assembly, namely Scotch-Weld™ EC-2216 and Scotch-Weld™ EC-9323-2, under two aging conditions: (1) high-energy electron irradiation using a Van de Graaf accelerator, and (2) thermal vacuum cycling. The research evaluates the evolution of intrinsic adhesive properties and adhesion to CFRP (carbon fiber-reinforced polymer) and aluminum adherents before and after exposure to these environmental conditions through tensile tests, peel tests, double-cantilever beam (DCB) tests, and dynamic mechanical analysis (DMA).