A mix design methodology of blast furnace slag and fly ash-based alkali-activated concrete

More Info
expand_more

Abstract

Although the application of blast furnace slag and fly ash-based alkali-activated concrete (BFS/FA-AAC) has both economic and environmental benefits, it is limited by the lack of a straightforward mix design method. In this paper, an experiment was conducted to investigate the effect of control factors, including the Na2O/binder ratio, the SiO2/Na2O ratio, the BFS/binder ratio, the water/binder ratio, and the water content on the workability (slump and rheology) of BFS/FA-AAC, and the effect of control factors include the Na2O/binder ratio, the SiO2/Na2O ratio, the BFS/binder ratio, the water/binder ratio, and the curing time on the compressive strength of BFS/FA-AAC. As a result, the influence degree and mechanism of each control factor on the performance of BFS/FA-AAC were quantitively explored and the accuracy of an empirical compressive strength formula was validated. Based on that, a practical mix design method of BFS/FA-AAC was eventually established. It is found that the mixture composition and content of paste can significantly influence the workability of BFS/FA-AAC. The compressive strength of BFS/FA-AAC is determined by control factors when the water content is within 160–195 kg/m3. The mechanical predictive method of BFS/FA-AAC is proven of high accuracy. The mixture designed by this methodology exhibits satisfied fresh and hardened performance as well as high environmental benefits.