Wind tunnel testing of wind turbine and wind farm control strategies for active power regulation

Journal Article (2024)
Author(s)

J. Gonzalez Silva (TU Delft - Team Riccardo Ferrari)

Daan Hoek (TU Delft - Team Jan-Willem van Wingerden)

Riccardo Ferrari (TU Delft - Team Riccardo Ferrari)

J.W. Van Wingerden (TU Delft - Team Jan-Willem van Wingerden)

Research Group
Team Riccardo Ferrari
DOI related publication
https://doi.org/10.1063/5.0215493
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Team Riccardo Ferrari
Issue number
5
Volume number
16
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Wind energy has emerged as a prominent alternative energy source, harvesting energy through turbines to contribute sustainably to the electricity grid. Effective control of these turbines is crucial for regulating power generation, with wind farm control strategies geared toward maximizing on-demand energy generation. In this work, we propose a wind turbine regulator based on blade-pitch actuation and assess the impact of adopted turbine derating strategies on aerodynamic loading and downstream power availability in an experimental setting. By considering a derating strategy based on generator torque control law, we explore two wind farm control approaches: thrust balance and power compensation. Our findings highlight the advantages of balancing aerodynamic loads across the farm, preventing turbine saturation, and enhancing power availability by 3%-5% compared to a uniform power dispatch. Furthermore, the inclusion of power compensation results in a heightened upper limit in wind farm power tracking, indicating a 22% boost in wind farm power availability. This research underscores the potential benefits of innovative turbine regulation strategies for optimizing wind farm performance and enhancing overall energy flexibility.