Numerical modelling of rolling contact fatigue damage initiation from non-metallic inclusions in bearing steel
Gopalakrishnan Ravi (Strategisch Initiatief Materialen, Universiteit Gent)
Wim De Waele (Universiteit Gent)
Ksenija Nikolic (Universiteit Gent, Strategisch Initiatief Materialen)
R. Petrov (TU Delft - Team Kevin Rossi, Universiteit Gent)
Stijn Hertelé (Universiteit Gent)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Bearing failure is a cause of concern in a variety of machinery such as turbines, transmissions, drills, engines, etc. It is often associated with rolling contact fatigue (RCF) triggered from damage initiation at non-metallic inclusions (NMI's). Experimental evidence shows that damage initiation lifetime is highly sensitive to the NMI characteristics and its bonding with the steel matrix. This study numerically investigates the role of NMI features and its bonding with the steel matrix on damage initiation lifetime. NMI characteristics modelled in this study are derived from an experimental investigation of a failed bearing. Simulation results highlight a near to instantaneous debonding at the matrix-inclusion interface followed by accelerated crack initiation. The critical depth for damage initiation shifts towards the surface with the increase in friction coefficient between roller and raceway. The simulations also reveal that larger inclusions show earlier damage initiation, indicating a size effect. The damage hotspots from the simulation results were compared with experimental findings and a hypothesis for crack initiation from a NMI is put forward.