Analysis of Adaptive Individual Pitch Control Schemes for Blade Fatigue Load Reduction on a 15 MW Wind Turbine
Manuel Lara (Universidad de Cordoba)
Sebastian Paul Mulders (TU Delft - Team Mulders)
Jan-Willem Van Van Wingerden (TU Delft - Team Jan-Willem van Wingerden)
Francisco Manteiga Vázquez (Universidad de Cordoba)
Juan Garrido (Universidad de Cordoba)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Individual pitch control (IPC) is a method to mitigate periodic blade loads in wind turbines, and it is typically implemented using the multi-blade coordinate (MBC) transform, which converts the blade load measurements from a rotating frame into the non-rotating tilt axis and yaw axis. Previous studies have shown that by including an additional tuning parameter in the MBC, the azimuth offset reduces the coupling between non-rotating axes, allowing for higher performance levels for diagonal controller structures. In these studies, the decentralized control of IPC was composed of two identical integral controllers. This work analyzes and compares the improvement that the azimuth offset can provide in different adaptive gain scheduling IPCs where the diagonal controllers can have integral or proportional action with different gains. They are applied to a 15 MW wind turbine simulated with OpenFAST v3.5 software. The controller parameter tuning is addressed as an optimization that reduces blade fatigue load based on the damage equivalent load (DEL) and is resolved through genetic algorithms. Simulations show that only using different controller gains in IPC does not provide significant improvements; however, including azimuth offset in the optimal IPC schemes with integral controllers allows for the greatest DEL reduction with a lower actuator effort.