Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene

Journal Article (2021)
Author(s)

Adnan Ozden (University of Toronto)

Y. Wang (University of Toronto)

Fengwang Li (University of Toronto)

Mingchuan Luo (University of Toronto)

Jared Sisler (University of Toronto)

Arnaud Thevenon (California Institute of Technology)

Alonso Rosas-Hernández (California Institute of Technology)

T.E. Burdyny (TU Delft - ChemE/Materials for Energy Conversion and Storage)

Yanwei Lum (University of Toronto)

More Authors (External organisation)

Research Group
ChemE/Materials for Energy Conversion and Storage
Copyright
© 2021 Adnan Ozden, Y. Wang, Fengwang Li, Mingchuan Luo, Jared Sisler, Arnaud Thevenon, Alonso Rosas-Hernández, T.E. Burdyny, Yanwei Lum, More Authors
DOI related publication
https://doi.org/10.1016/j.joule.2021.01.007
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 Adnan Ozden, Y. Wang, Fengwang Li, Mingchuan Luo, Jared Sisler, Arnaud Thevenon, Alonso Rosas-Hernández, T.E. Burdyny, Yanwei Lum, More Authors
Research Group
ChemE/Materials for Energy Conversion and Storage
Issue number
3
Volume number
5
Pages (from-to)
706-719
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

CO
2 electroreduction offers a route to net-zero-emission production of C
2H
4—the most-produced organic compound. However, the formation of carbonate in this process causes loss of CO
2 and a severe energy consumption/production penalty. Dividing the CO
2-to-C
2H
4 process into two cascading steps—CO
2 reduction to CO in a solid-oxide electrolysis cell (SOEC) and CO reduction to C
2H
4 in a membrane electrode assembly (MEA) electrolyser—would enable carbonate-free C
2H
4 electroproduction. However, this cascade approach requires CO-to-C
2H
4 with energy efficiency well beyond demonstrations to date. Here, we present a layered catalyst structure composed of a metallic Cu, N-tolyl-tetrahydro-bipyridine, and SSC ionomer that enables efficient CO-to-C
2H
4 in a MEA electrolyser. In the full SOEC-MEA cascade approach, we achieve CO
2-to-C
2H
4 with no loss of CO
2 to carbonate and a total energy requirement of ~138 GJ (ton C
2H
4)
−1, representing a ~48% reduction in energy intensity compared with the direct route.

Files

Accepted_author_version_Joule.... (pdf)
(pdf | 1.43 Mb)
- Embargo expired in 15-02-2022
License info not available