Safe, Efficient, Comfort, and Energy-saving Automated Driving through Roundabout Based on Deep Reinforcement Learning

Conference Paper (2023)
Author(s)

Henan Yuan (Beijing Jiaotong University)

Penghui Li (Beijing Jiaotong University)

B Arem (TU Delft - Transport and Planning)

Liujiang Kang (Beijing Jiaotong University)

Haneen Farah (TU Delft - Transport and Planning)

Y. Dong (TU Delft - Transport and Planning)

Transport and Planning
DOI related publication
https://doi.org/10.1109/ITSC57777.2023.10422488
More Info
expand_more
Publication Year
2023
Language
English
Transport and Planning
Pages (from-to)
6074-6079
ISBN (electronic)
9798350399462
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Traffic scenarios in roundabouts pose substantial complexity for automated driving. Manually mapping all possible scenarios into a state space is labor-intensive and challenging. Deep reinforcement learning (DRL) with its ability to learn from interacting with the environment emerges as a promising solution for training such automated driving models. This study explores, employs, and implements various DRL algorithms, namely Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), and Trust Region Policy Optimization (TRPO) to instruct automated vehicles' driving through roundabouts. The driving state space, action space, and reward function are designed. The reward function considers safety, efficiency, comfort, and energy consumption to align with real-world requirements. All three tested DRL algorithms succeed in enabling automated vehicles to drive through the roundabout. To holistically evaluate the performance of these algorithms, this study establishes an evaluation methodology considering multiple indicators, i.e., safety, efficiency, comfort and energy consumption level. A method employing the Analytic Hierarchy Process is also developed to weigh these evaluation indicators. Experimental results on various testing scenarios reveal that the TRPO algorithm outperforms DDPG and PPO in terms of safety and efficiency, while PPO performs the best in terms of comfort level and energy consumption. Lastly, to verify the model's adaptability and robustness regarding other driving scenarios, this study also deploys the model trained by TRPO to a range of different testing scenarios, e.g., highway driving and merging. Experimental results demonstrate that the TRPO model trained on only roundabout driving scenarios exhibits a certain degree of proficiency in highway driving and merging scenarios. This study provides a foundation for the application of automated driving with DRL.

Files

Safe_Efficient_Comfort_and_Ene... (pdf)
(pdf | 0.629 Mb)
- Embargo expired in 28-03-2024
License info not available