Self-healing Asphalt for Road Pavements
Amir Tabaković (TU Delft - Materials and Environment, Dublin Institute of Technology, University College Dublin)
E Schlangen (TU Delft - Materials and Environment)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents a unique self-healing system for asphalt pavement which employs compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are used to distribute the rejuvenator throughout the pavement mixture, thereby overcoming some of the problems associated with alternate asphalt pavement healing methods, i.e., spherical capsules and hollow fibres. The healing system performance, when embedded in Porous Asphalt (PA) mix was tested by employing: (i) Indirect Tensile Stiffness and Strength test (ii) 4 Point Bending Fatigue test. The Semi Circular Bend (SCB) test was adopted to study crack propagation and its closure (healing) in an asphalt mix. The findings demonstrate that compartmented alginate fibres have capacity to survive asphalt mixing and compaction process. The fibres can efficiently repair damage (close the cracks), increase asphalt mix stiffness and strength. However, when the asphalt mix is subjected to fatigue loading the system does not significantly improve healing properties of the asphalt mix. Nevertheless, the findings indicate that, with further enhancement, compartmented calcium alginate fibres may present a promising new approach for the development of self-healing asphalt pavement systems.