Towards Model Discovery Using Domain Decomposition and PINNs
Tirtho S. Saha (Leibniz Universität)
Alexander Heinlein (TU Delft - Numerical Analysis)
Cordula Loidl-Reisch (Technical University of Braunschweig)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We enhance machine learning algorithms for learning model parameters in complex systems represented by differential equations with domain decomposition methods. The study evaluates the performance of two approaches, namely (vanilla) Physics-Informed Neural Networks (PINNs) and Finite Basis Physics-Informed Neural Networks (FBPINNs), in learning the dynamics of test models with a quasi-stationary longtime behavior. We test the approaches for data sets in different dynamical regions and with varying noise level. As results, the FBPINN approach better captures the overall dynamical behavior compared to the vanilla PINN approach, even in cases with data only from a time domain with quasi-stationary dynamics.