Precise regional L5 positioning with IRNSS and QZSS
stand-alone and combined
Kan Wang (Curtin University)
Pei Chen (Beihang University, Curtin University)
Safoora Zaminpardaz (Curtin University)
Peter J.G. Teunissen (TU Delft - Mathematical Geodesy and Positioning, Curtin University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this contribution we analyze the single-frequency L5 positioning capabilities of the two regional satellite navigation systems IRNSS and QZSS, stand alone as well as combined. The positioning analysis is done for two different baselines, having a mix of receivers, providing ambiguity-float and ambiguity-fixed positioning for models with and without zenith tropospheric delay (ZTD) estimation. The analyses include a precision analysis of the observed signals, as well as an analysis of the ambiguity resolution performance. This is done for both the multipath-uncorrected case as well as the multipath-mitigated case. It is shown that although single-system positioning performance is rather poor, the ZTD-fixed, single-epoch ambiguity success rates (ASRs) are close to 100% when the two regional systems are combined, thus providing mm-to-cm level precision for instantaneous ambiguity-fixed positioning. When the ZTD is estimated as well, only a few additional epochs are needed to get the ASRs close to 100%.