Line spectral estimation with unlimited sensing
Hongwei Wang (University of Electronic Science and Technology of China)
Jun Fang (University of Electronic Science and Technology of China)
Hongbin Li (Stevens Institute of Technology)
G Leus (TU Delft - Signal Processing Systems)
Ruixiang Zhu (University College London)
Lu Gan (Brunel University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In the paper, we consider the line spectral estimation problem in an unlimited sensing framework (USF), where a modulo analog-to-digital converter (ADC) is employed to fold the input signal back into a bounded interval before quantization. Such an operation is mathematically equivalent to taking the modulo of the input signal with respect to the interval. To overcome the noise sensitivity of higher-order difference-based methods, we explore the properties of the first-order difference of modulo samples, and develop two line spectral estimation algorithms based on the first-order difference, which are robust against noise. Specifically, we show that, with a high probability, the first-order difference of the original samples is equivalent to that of the modulo samples. By utilizing this property, line spectral estimation is solved via a robust sparse signal recovery approach. The second algorithms is built on our finding that, with a sufficiently high sampling rate, the first-order difference of the original samples can be decomposed as a sum of the first-order difference of the modulo samples and a sequence whose elements are confined to three possible values. This decomposition enables us to formulate the line spectral estimation problem as a mixed integer linear program that can be efficiently solved. Simulation results show that both proposed methods are robust against noise and achieve a significant performance improvement over the higher-order difference-based method. methods.
Files
File under embargo until 26-01-2026