Insights into Global Glacier Dynamics Using Physics-Based Modelling

Master Thesis (2024)
Author(s)

V. Gajadhar (TU Delft - Applied Sciences)

Contributor(s)

Jordi Bolibar – Mentor (Université Grenoble Alpes)

Bas J.H. van de Wiel – Graduation committee member (TU Delft - Atmospheric Remote Sensing)

Bert Wouters – Graduation committee member

D. Eric Verschuur – Graduation committee member (TU Delft - Applied Geophysics and Petrophysics)

Faculty
Applied Sciences
More Info
expand_more
Publication Year
2024
Language
English
Graduation Date
30-04-2024
Awarding Institution
Delft University of Technology
Project
ODINN
Programme
Applied Physics
Faculty
Applied Sciences
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This thesis delves into glacier dynamics using the 2D Shallow Ice Approximation enriched by satellite remote sensing data on glacier surface velocities and ice thickness, aiming to refine empirical laws for better predicting glacier movements. The integration of such data has been pivotal, markedly enhancing model calibration despite challenges like steady-state assumptions necessitated by data scarcity. This underscores the critical role of high-quality, temporally resolved data in modeling glacier dynamics accurately.
A significant advancement was the implementation of spatial stratification, which notably improved model performance—reducing Root Mean Square Error (RMSE) by up to 30% and elevating the coefficient of determination (R²) by 0.2 to 0.4 across different regions. This highlights the potential of fully distributed inversions to capture the complex variability of glaciers. Employing Julia for its computational efficiency proved effective for large-scale modeling tasks, setting a promising foundation for future research aimed at understanding and predicting glacier responses to climate change. It is recommended to utilize geostatistical interpolation methods for inverting glacier characteristics from sparse data, in order to acquire these characteristics across the entire glacier area.

Files

MEP_Vivek.pdf
(pdf | 1.57 Mb)
License info not available