Model identification of a flapping wing micro aerial vehicle
Joao Aguiar Vieira Caetano (TU Delft - Control & Simulation)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Different flapping wing micro aerial vehicles (FWMAV) have been developed for academic (Harvard’s RoboBee), military (Israel Aerospace Industries’ Butterfly) and technology demonstration (Aerovironment’s NanoHummingBird) purposes. Among these, theDelFly II is recognized as one of themost successful configurations of FWMAV, with a broad flight envelope, that spans fromhover to fast forward flight, revealing autonomous capabilities in the form of automatic flight and obstacle avoidance. Despite the technological development, very little is known about the dynamic behavior and aerodynamic force generation mechanisms of FWMAVs which, in turn, limits the development of models that could be used for advanced control strategies and flight simulations. The present dissertation contributes to the understanding of the mechanics of flapping flight, using a data-driven systematic approach to the modeling of the DelFly II.