Near-real-time satellite precipitation data ingestion into peak runoff forecasting models
Paul Muñoz (Universidad de Cuenca)
G. Corzo (IHE Delft Institute for Water Education)
Dmitri Solomatine (IHE Delft Institute for Water Education, Water Problems Institute of Russian Academy of Sciences, TU Delft - Water Resources)
Jan Feyen (Katholieke Universiteit Leuven)
Rolando Célleri (Universidad de Cuenca)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Extreme peak runoff forecasting is still a challenge in hydrology. In fact, the use of traditional physically-based models is limited by the lack of sufficient data and the complexity of the inner hydrological processes. Here, we employ a Machine Learning technique, the Random Forest (RF) together with a combination of Feature Engineering (FE) strategies for adding physical knowledge to RF models and improving their forecasting performances. The FE strategies include precipitation-event classification according to hydrometeorological criteria and separation of flows into baseflow and directflow. We used ∼ 3.5 years of hourly precipitation information retrieved from two near-real-time satellite precipitation databases (PERSIANN-CCS and IMERG-ER), and runoff data at the outlet of a 3391-km2 basin located in the tropical Andes of Ecuador. The developed models obtained Nash-Sutcliffe efficiencies varying from 0.86 to 0.59 for lead times between 1 and 6 h. The best performances were obtained for peak runoffs triggered by short-extension precipitation events (<50 km2) where infiltration- or saturation-excess runoff responses are well learned by the RF models. Conversely, the forecasting difficulty is associated with extensive precipitation events. For such conditions, a deeper characterization of the biophysical characteristics of the basin is encouraged for capturing the dynamic of directflow across multiple runoff responses. All in all, the potential to employ near-real-time satellite precipitation and the use of FE strategies for improving RF forecasting provides hydrologists with new tools for real-time runoff forecasting in remote or complex regions.