Entropic uncertainty and measurement reversibility

Journal Article (2016)
Author(s)

Mario Berta (California Institute of Technology)

S.D.C. Wehner (TU Delft - Quantum Information and Software)

Mark M. Wilde (Louisiana State University)

Research Group
Quantum Information and Software
Copyright
© 2016 Mario Berta, S.D.C. Wehner, Mark M. Wilde
DOI related publication
https://doi.org/10.1088/1367-2630/18/7/073004
More Info
expand_more
Publication Year
2016
Language
English
Copyright
© 2016 Mario Berta, S.D.C. Wehner, Mark M. Wilde
Research Group
Quantum Information and Software
Volume number
18
Pages (from-to)
1-13
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The entropic uncertainty relation with quantum side information (EUR-QSI) from (Berta et al 2010 Nat. Phys. 6 659) is a unifying principle relating two distinctive features of quantum mechanics: quantum uncertainty due to measurement incompatibility, and entanglement. In these relations, quantum uncertainty takes the form of preparation uncertainty where one of two incompatible measurements is applied. In particular, the ‘uncertainty witness’ lower bound in the UR-QSI is not a function of a post-measurement state. An insightful proof of the EUR-QSI from (Coles et al 2012 Phys. Rev. Lett. 108 210405) makes use of a fundamental mathematical consequence of the postulates of quantum mechanics known as the non-increase of quantum relative entropy under quantum channels. Here, we exploit this perspective to establish a tightening of the EUR-QSI which adds a new state-dependent term in the lower bound, related to how well one can reverse the action of a quantum measurement. As such, this new term is a direct function of the postmeasurement state and can be thought of as quantifying how much disturbance a given measurement causes. Our result thus quantitatively unifies this feature of quantum mechanics with the others mentioned above.Wehave experimentally tested our theoretical predictions on the IBM quantum experience and find reasonable agreement between our predictions and experimental outcomes.