Contrastive Learning with Edge-Wise Augmentation for Rumor Detection
Nan Liu (University of Electronic Science and Technology of China)
Fengli Zhang (University of Electronic Science and Technology of China)
Qiang Gao (Southwestern University of Finance and Economics)
X. Chen (TU Delft - Sanitary Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Exploring and modeling the spreading process of rumors have shown great potential in improving rumor detection performance. However, existing propagation-based rumor detection models often overlook the uncertainty of the underlying propagation structure and typically require a large amount of labeled data for training. To address these challenges, we propose a novel rumor detection framework, namely, the Uncertainty-Inference Contrastive Learning (UICL) model. Specifically, UICL innovatively incorporates an edge-wise augmentation strategy into the general contrastive learning framework, including an edge-inference augmentation component and an EdgeDrop augmentation component, which primarily aim to capture the edge uncertainty of the propagation structure and alleviate the sparsity problem of the original dataset. A new negative sampling strategy is also introduced to enhance contrastive learning on rumor propagation graphs. Furthermore, we use labeled data to fine-tune the detection module. Our experiments, conducted on three real-world datasets, demonstrate that UICL can not only significantly improve detection accuracy but also reduce the dependency on labeled data compared to state-of-the-art baselines.