Suppressing Information Diffusion via Link Blocking in Temporal Networks

More Info
expand_more

Abstract

In this paper, we explore how to effectively suppress the diffusion of (mis)information via blocking/removing the temporal contacts between selected node pairs. Information diffusion can be modelled as, e.g., an SI (Susceptible-Infected) spreading process, on a temporal social network: an infected (information possessing) node spreads the information to a susceptible node whenever a contact happens between the two nodes. Specifically, the link (node pair) blocking intervention is introduced for a given period and for a given number of links, limited by the intervention cost. We address the question: which links should be blocked in order to minimize the average prevalence over time? We propose a class of link properties (centrality metrics) based on the information diffusion backbone [19], which characterizes the contacts that actually appear in diffusion trajectories. Centrality metrics of the integrated static network have also been considered. For each centrality metric, links with the highest values are blocked for the given period. Empirical results on eight temporal network datasets show that the diffusion backbone based centrality methods outperform the other metrics whereas the betweenness of the static network, performs reasonably well especially when the prevalence grows slowly over time.