The benefits of adaptive parametrization in multi-objective Tabu Search optimization

More Info
expand_more

Abstract

In real-world optimization problems, large design spaces and conflicting objectives are often combined with a large number of constraints, resulting in a highly multi-modal, challenging, fragmented landscape. The local search at the heart of Tabu Search, while being one of its strengths in highly constrained optimization problems, requires a large number of evaluations per optimization step. In this work, a modification of the pattern search algorithm is proposed: this modification, based on a Principal Components' Analysis of the approximation set, allows both a re-alignment of the search directions, thereby creating a more effective parametrization, and also an informed reduction of the size of the design space itself. These changes make the optimization process more computationally efficient and more effective - higher quality solutions are identified in fewer iterations. These advantages are demonstrated on a number of standard analytical test functions (from the ZDT and DTLZ families) and on a real-world problem (the optimization of an axial compressor preliminary design).