Stereo-consistent screen-space ambient occlusion
P. Shi (National University of Defense Technology, TU Delft - Computer Graphics and Visualisation)
M. Billeter (University of Leeds)
Elmar Eisemann (TU Delft - Computer Graphics and Visualisation)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Screen-space ambient occlusion (SSAO) shows high efficiency and is widely used in real-time 3D applications. However, using SSAO algorithms in stereo rendering can lead to inconsistencies due to the differences in the screen-space information captured by the left and right eye. This will affect the perception of the scene and may be a source of viewer discomfort. In this paper, we show that the raw obscurance estimation part and subsequent filtering are both sources of inconsistencies. We developed a screen-space method involving both views in conjunction, leading to a stereo-aware raw obscurance estimation method and a stereo-aware bilateral filter. The results show that our method reduces stereo inconsistencies to a level comparable to geometry-based AO solutions, while maintaining the performance benefits of a screen-space approach.