Report of the Double-Molybdate Phase Cs2Ba(MoO4)2 with a Palmierite Structure and Its Thermodynamic Characterization
Anna L. Smith (TU Delft - RST/Reactor Physics and Nuclear Materials)
Nathan de Zoete (Student TU Delft)
Maikel Rutten (Student TU Delft)
Lambert Van Eijck (TU Delft - RST/Neutron and Positron Methods in Materials)
J. C. Griveau (European Commission Joint Research Centre)
E. Colineau (European Commission Joint Research Centre)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The existence of a novel double-molybdate phase with a palmierite-type structure, Cs2Ba(MoO4)2, is revealed in this work, and its structural properties at room temperature have been characterized in detail using X-ray and neutron diffraction measurements. In addition, its thermal stability and thermal expansion are investigated in the temperature range 298-673 K using high-temperature X-ray diffraction, leading to the volumetric thermal expansion coefficient αV ≈ 43.0 × 10-6 K-1. The compound's standard enthalpy of formation at 298.15 K has been obtained using solution calorimetry, which yielded ΔfHm°(Cs2Ba(MoO4)2, cr, 298.15 K) = -3066.6 ± 3.1 kJ· mol-1, and its standard entropy at 298.15 K has been derived from low-temperature (2.1-294.3 K) thermal-relaxation calorimetry as Sm°(Cs2Ba(MoO4)2, cr, 298.15 K) = 381.2 ± 11.8 J K-1 mol-1.