Geometrical Nonlinearities on the Bearing Capacity in Clay

A Validation Data Set for Numerical Tools

Journal Article (2024)
Author(s)

Cor Zwanenburg (Deltares, TU Delft - Geo-engineering)

Britt Wittekoek (Deltares)

Etienne Alderlieste (Deltares)

Mario Martinelli (Carleton University)

Geo-engineering
DOI related publication
https://doi.org/10.1061/JGGEFK.GTENG-12104
More Info
expand_more
Publication Year
2024
Language
English
Geo-engineering
Issue number
10
Volume number
150
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

A series of plate loading tests on clay has been conducted in the centrifuge. The aim of the tests is to create a data set, which is freely downloadable, to validate numerical tools that account for geometrical nonlinearities. The tests include two sources of geometrical non-linearities. The first source is the reducing clay layer thickness below the plate, which causes an increase in resistance. The second source is the backflow of the clay around the tip of the plate. The backflow has a reducing effect on the plate resistance. This paper outlines four tests: two involving a wide plate and two with a small plate. Each plate geometry is investigated under both smooth and rough side model boundaries. An material point method (MPM) schematization is used for numerical analysis. The schematization and parameter selection are initially validated by comparing the MPM results against CPTu data in each test. The numerical analysis examines the impact of a finite layer thickness by analyzing various layer thicknesses. Furthermore, the analysis shows the influence of the backflow on the plate resistance by analyzing different ratios of shaft to plate width. In this study, the pore pressures below the plate and vertical and horizontal displacement fields are considered in addition to the load displacement curves. The MPM simulations are in good agreement with the centrifuge data.

Files

Zwanenburg-et-al-2024-geometri... (pdf)
(pdf | 10.3 Mb)
- Embargo expired in 18-12-2024
License info not available