A Novel, Demountable Structural Glass System Out of Dry-Assembly, Interlocking Cast Glass Components

Conference Paper (2018)
Author(s)

F. Oikonomopoulou (TU Delft - Structural Design & Mechanics)

T. Bristogianni (TU Delft - Applied Mechanics)

L. Barou (TU Delft - Applied Mechanics)

Erwin Jacobs

G. Frigo (Politecnico di Milano, TU Delft - Structural Design & Mechanics)

F.A. Veer (TU Delft - Structural Design & Mechanics)

R. Nijsse (TU Delft - Applied Mechanics, TU Delft - OLD Structural Design)

Research Group
Structural Design & Mechanics
Copyright
© 2018 F. Oikonomopoulou, T. Bristogianni, L. Barou, Erwin Jacobs, G. Frigo, F.A. Veer, R. Nijsse
DOI related publication
https://doi.org/10.7480/cgc.6.2118
More Info
expand_more
Publication Year
2018
Language
English
Copyright
© 2018 F. Oikonomopoulou, T. Bristogianni, L. Barou, Erwin Jacobs, G. Frigo, F.A. Veer, R. Nijsse
Research Group
Structural Design & Mechanics
Pages (from-to)
71-82
ISBN (electronic)
978-94-6366-044-0
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Cast glass components are a promising solution for engineering pure glass structures of high transparency and load-carrying capacity due to their large cross-sectional area and monolithic nature. Currently, the few realized structures employing cast glass components rely either on a steel substructure or on an adhesive of high bonding strength and typically less than 2 mm thickness, to ensure the stiffness and stability of the construction. Whereas the first solution compromises the overall level of transparency, the second results to a permanent construction requiring intensive and meticulous labour and extreme accuracy. This paper explores the potential of a novel, reversible all-glass system comprising dry-assembly, interlocking cast glass components as a promising and sustainable solution that can avoid the above-mentioned challenges. Owing to its interlocking geometry, the proposed system can attain the desired stiffness and stability with the aid of minimal, if any, metal framing. Furthermore, the suggested system circumvents the use of adhesives by using a dry, colourless interlayer as an intermediate between the glass components to accommodate any dimensional tolerances and allow for an even load distribution; moreover, it allows for the disassembly and circular use of the components. To validate the concept, different component geometries and interlocking mechanisms are developed. As a proof of concept, the most promising interlocking forms are kiln cast in 1:2 scale and assessed in terms of mechanical interlocking capacity, mass distribution, residual stress generation and ease of fabrication. In parallel, research is conducted on different materials for the dry, transparent interlayer. From the developed designs, blocks with osteomorphic interlocking mechanisms are selected as the most promising concept and are further assessed by numerical modelling to study the influence of the interlocking geometry to the overall structural performance. The results highlight the structural potential of the proposed system and demonstrate its feasibility.

Files

Document.pdf
(pdf | 1.38 Mb)
Other