Energy resilience through self-organization during widespread power outages
S. Causevic (TU Delft - System Engineering)
K. Saxena (Indian Institute of Technology Delhi)
ME Warnier (TU Delft - System Engineering)
AR Abhyankar (Indian Institute of Technology Delhi)
Frances M. Brazier (TU Delft - System Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Resilience of power systems is highly impacted by factors such as increasing severity and frequency of weather events, but also smart grid advances that introduce major operational changes in power systems. Rapidly adapting to these changing circumstances and harnessing the potential of technolo- gical advances is the key to ensuring that power systems stay operational during disturbances, thereby improving resilience. This paper addresses this challenge by presenting an approach for improving resilience through local energy resource sharing across multiple distribution systems. The approach brings together the physical and the ICT layer of power systems through a self-organization approach that automatically alters the physical grid topology and forms local energy groups in order to mitigate the effects of widespread outages. Thereby, supply and demand are locally matched, and demand met is maximized during an outage. The results demonstrate that using the proposed approach, operational resilience of impacted distribution systems is improved.