Wave-driven hydrodynamics around a saltmarsh cliff under storm conditions
the role of cliff height and vegetation
J.R.M. Muller (University of Twente)
B. W. Borsje (University of Twente)
J.J. van der Werf (Deltares, University of Twente)
Dimitris Dermentzoglou (TU Delft - Coastal Engineering)
Bas Hofland (TU Delft - Hydraulic Structures and Flood Risk)
A. Antonini (TU Delft - Coastal Engineering)
Suzanne J.M.H. Hulscher (University of Twente)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Saltmarshes are a promising nature-based alternative for conventional flood protection. However, saltmarshes can erode under storm conditions, whereby the seaward edge of the saltmarsh often forms a vertical cliff. Despite its importance, the effect of storm conditions on erosion at the saltmarsh cliff remains understudied, especially when waves traverse over a cliff. This research investigates the complex flow patterns around a saltmarsh cliff non-intrusively using Particle Image Velocimetry (PIV) conducted through a series of scaled monochromatic wave flume experiments. We adopted realistic foreshore configurations (e.g. cliff heights) and hydraulic loading conditions from the Dutch Wadden Sea. Results show two local near-bed velocity maxima on top of the saltmarsh, created during different wave phases by water depth contraction, wave transmission and interaction between flow and vortices that are shed from the cliff. Under the wave crest, high onshore-directed near-bed velocities were measured at approximately 2.5–4 times the cliff height onshore from the cliff. Under the wave trough, high offshore-directed velocities were found at the marsh edge. Both onshore- and offshore-directed velocities increase with increasing cliff height, larger wave height or lower water depth. Vegetation on top of the marsh reduces both the incoming and outgoing velocities in front of the cliff. Increasing the cliff height resulted in a greater reduction in velocities by the vegetation. These results demonstrate how local near-bed velocity maxima and location are influenced by the presence of a cliff and the interaction with vegetation on top of the saltmarsh. This research highlights the vulnerability of the cliff even during inundation of the cliff and will help to implement saltmarshes as nature-based solutions for flood defence.