Circular Image

Bas Hofland

118 records found

The passage of ships in confined waterways creates a stern wave that can overflow bank protection structures such as groins. This overflow, due to the long-period primary ship-induced waves, can be high in velocity, especially at the lee-side slope of groins, potentially causing ...
During severe storms, waves can overtop dikes, leading to erosion of the crest and landward slope, which may ultimately result in breaching. To accurately model this erosion, the overtopping flow needs to be described in a time-dependent manner for each individual wave overtoppin ...
Mangrove forests are vital for flood reduction, yet their failure mechanisms during storms are poorly known, hampering their integration into engineered coastal protection. In this paper, we aimed to unravel the relationship between the resistance of mangrove trees to overturning ...

Nature Meets Infrastructure

The Role of Mangroves in Strengthening Bangladesh’s Coastal Flood Defenses

Mangroves have been used for coastal protection in Bangladesh since the 1960s, but their integration with embankment designs has not been fully explored. This paper investigates the effect of existing mangroves on required embankment performance, with a focus on the wave-damping ...
During extreme high-water events in river systems, the load on a levee section may exceed its resistance, initiating the breaching process which eventually leads to levee failure. The success of an emergency measure to intervene in the initial phases of levee failure is mainly de ...
Rock groins in the Elbe Estuary are constructed to maintain proper water levels for navigation and for embankment erosion protection. At certain localities, significant damages to rock groins have been observed due to the primary ship-generated waves. Primary waves are generated ...
Riparian forests in front of dikes can dampen incoming waves and thereby contribute to flood safety. In real-scale flume experiments with live pollard willow trees (forming a 40-m-long forest), it was observed that during storm conditions, a maximum reduction of 20 % in incoming ...
For the last two decades, significant damage to groyne structures has been observed in the German Elbe estuary. The main reason is the generation of primary ship-induced wave loading. The stern wave of the primary wave system appears as an overflowing over groyne, leading to dama ...
Hard stabilization methods have traditionally been employed to mitigate coastal erosion. Concrete armour is widely used due to its high level of dependence, robustness, ease of production and cost effectiveness (Cooke et al., 2020; Pikey and Cooper, 2012). It is inevitable that c ...
Nature-based flood defences receive increasing interest as a viable option for improving flood safety worldwide. A contemporary case is using the ability of saltmarshes to attenuate waves during storm conditions for strengthening coastal flood defences. To ensure a long-term rein ...

Delta Transport Processes Laboratory

Lab For Surface And Internal Wave-Induced Currents Under Rotation

The presence of marine pollutants such as marine plastics has increased significantly over the last decades and poses a major environmental problem, in both the coastal and offshore area. Marine pollutants are transported, mixed and diffused in the ocean, which means the understa ...
During berthing operations of large vessels, the bow thruster jet deflecting on the quay wall and the bed can lead to high flow velocities near the bed. This may scour the bed when it is left unprotected, causing instability of the adjacent quay wall. Due to the complex flow fiel ...
Physical or numerical models are common tools to investigate the interaction between waves and marine structures. The decomposition of the water level into incident and reflected wave components is often required, as most design variables (overtopping, run-up) are linked to the i ...
Single layer randomly placed armour units are used in many rubble mound breakwaters around the world. For these armour layers, breakage of armour units due to rocking could be a major damage mechanism, but no good methods exist to evaluate and quantify rocking. The aim of the stu ...

Scaled versus real-scale tests

Identifying scale and model errors in wave damping through woody vegetation

Vegetation in front of levees, dikes and seawalls can decrease wave energy and therefore contribute to the safety against flooding. However, wave damping predictions by vegetation are still inaccurate due to measurement and modelling uncertainties. Many studies focused on finding ...
Hydraulic structures are essential for flood protection, water management and navigation in coastal, delta and lake regions. Their importance will continue to grow in the coming years and decades, because of two main factors. Firstly, because of the consequences of climate change ...
This study treats a detached homogenous low-crested structure (HLCS) made of Cubipod concrete elements placed seaward of a vertical wall (forming a basin in between) to reduce overtopping. Assessing the complex hydrodynamics and effects of changing the geometry of such a system i ...
During extreme high-water events, the phreatic water level in levees will rise over time due to infiltration of water. This can promote slope instability or internal erosion, and eventually lead to structural failure. A potential solution is the application of an impermeable seal ...
Physical model tests have been performed to study static stability of rock-armoured mild slopes. Current stability design formulae for steeper rock-armoured slopes focus on plunging and surging waves. Slopes of 1:6 and milder usually have more spilling breakers which decreases th ...
Initial damage, caused by previous wave loading or other events, might affect the hydraulic stability of pattern-placed revetments. Three common types of damage are considered in this study. The effect of this assumed initial damage on the hydraulic stability and failure probabil ...