An upscaling model for simulation of geothermal processes in stratified formations

Journal Article (2024)
Author(s)

Jinyu Tang (United Arab Emirates University)

Yang Wang (Qingdao University of Technology)

W.R. Rossen (TU Delft - Reservoir Engineering)

Research Group
Reservoir Engineering
DOI related publication
https://doi.org/10.1016/j.geothermics.2024.103095
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Reservoir Engineering
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Volume number
122
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

In stratified porous media, non-uniform velocity between layers combined with thermal conduction across layers causes spreading of the thermal front: thermal Taylor dispersion. Conventional upscaling not accounting for this heterogeneity within simulation grid blocks underestimates thermal dispersion, leading to overestimation of thermal breakthrough time. We derive a model for effective longitudinal thermal diffusivity in the direction of flow, αeff, to represent the effective thermal dispersion in two-layer media. αeff, accounting for thermal Taylor dispersion, is much greater than the thermal diffusivity of the rock itself. We define a dimensionless number, NTC, a ratio of times for longitudinal convection to transverse conduction, as an indicator of transverse thermal equilibration of the system during cold- or hot-water injection. For NTC > 5, thermal dispersion in the two-layer system closely approximates a single layer with αeff. This suggests a two-layer medium satisfying NTC > 5 can be combined into a single layer with an effective longitudinal thermal diffusivity αeff. In application to a geothermal reservoir, one can apply the model to perform upscaling in stages, i.e. combining two layers satisfying the NTC criterion in each stage. The αeff model accounting for the fine-scale heterogeneity within simulation grid blocks would enhance the prediction accuracy of thermal breakthrough time and thus thermal lifetime.

Files

1-s2.0-S0375650524001834-main.... (pdf)
(pdf | 2.09 Mb)
- Embargo expired in 04-01-2025
License info not available