Computational homogenization method for the bending analysis of submarine power cables
P. Fang (TU Delft - Transport Engineering and Logistics)
Xiao Li (Institute of High Performance Computing)
Xiaoli Jiang (TU Delft - Transport Engineering and Logistics)
Hans Hopman (TU Delft - Ship Design, Production and Operations)
Yong Bai (Zhejiang University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The complex structure and material property of a cable, particularly the stick-slip issue among its components pose the challenge for the bending analysis of submarine power cables. The calculation time and convergence problem of a full model makes the simulation unpractical during the design phase. This paper takes advantage of the peculiar structural property of helical components inside a cable, proposing a computational homogenization approach for analyzing the cable behavior under bending from global and local perspectives. This method assumes a macro model that is based on the theory of periodic beamlike structure, and a short-size micro model that is solved through a detailed finite element study. Results demonstrate the efficiency and capability of the proposed model that considers the structure nonlinearity and contact condition of a multi-layer cable with helical wires.