Validation of a novel bicycle simulator with realistic lateral and roll motion
Jelle Haasnoot (Tacx by Garmin, Student TU Delft)
R Happee (TU Delft - Intelligent Vehicles)
V. van der Wijk (TU Delft - Mechatronic Systems Design)
Arend Schwab (TU Delft - Biomechatronics & Human-Machine Control)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Bicycle simulators have been the subject of considerable research, however, few of these attempts have integrated direct balance control and realistic freedom of motion to deliver a real-world dynamic cycling experience. This study presents the BIKE (Bicycle Intrinsic Kinematics Emulator) system, a kinematic bicycle simulator, developed with the purpose of letting its users experience realistic steer, roll, yaw and sway motions. Motion is provided with Carvallo–Whipple bicycle model-based control of sway and yaw combined with passive steer and roll. This study validates the BIKE simulator by comparing cycling behaviour and subjective evaluation for the simulator with and without motion to outdoor tests with an instrumented bicycle. 15 participants of varying age and mass, performed straight-line cycling, at low ((Formula presented.)) to high ((Formula presented.)) velocities and zig-zag manoeuvres. Results show that users can successfully rely on existing cycling skills to use the simulator with motion. Objectively, in the kinematic sense, the simulator with motion performs similarly to an outdoor bicycle. Subjectively, the simulator performs better with motion and is experienced by riders as close to real outdoor cycling.