Traffic Flow on a Ring with a Single Autonomous Vehicle
An Interconnected Stability Perspective
Vittorio Giammarino (Student TU Delft, Boston University)
Simone Baldi (Southeast University, TU Delft - Team Bart De Schutter)
Paolo Frasca (Université Grenoble Alpes)
Maria Laura Delle Monache (Université Grenoble Alpes)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In recent years, field experiments have been performed on ring roadways with human-driven vehicles or with a mix of human-driven and autonomous vehicles. While these experiments demonstrate the potential for controlling traffic flows by a small number of autonomous vehicles, the theoretical framework about such a possibility is to a large extent incomplete. Indeed, most work on mixed traffic focused on classical asymptotical stability notions, neglecting that human drivers are prone to the interconnected instability known in the literature as string instability. This work aims to enhance the existing theories to meet the questions raised by the field experiments. It starts from the observation that the standard notion of string stability on a ring roadway is too demanding for a mixed traffic scenario: therefore, a new interconnected stability definition, named weak ring stability, is proposed. This new interconnected stability notion, in combination with classical stability, is able to explain phenomena observed in field experiments and to highlight possibilities and limitations of traffic control via sparse autonomous vehicle. Furthermore, it allows designing AV controllers with improved string stability specifications, at the price of reducing the sparsity of the autonomous vehicles.