Combining Fault Analysis Technologies for ISO26262 Functional Safety Verification
F. Augusto da Silva (Cadence Design Systems, TU Delft - Computer Engineering)
Ahmet Cagri Bagbaba (Cadence Design Systems)
S. Hamdioui (TU Delft - Quantum & Computer Engineering)
Christian Sauer (Cadence Design Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The development of Integrated Circuits for the Automotive sector imposes on complex challenges. ISO26262 Functional Safety requirements entail extensive Fault Injection campaigns and complex analysis for the evaluation of deployed Software Tools. This paper proposes a methodology to improve Fault Analysis Tools Confidence Level (TCL) by detecting errors in the classification of faults. By combining the strengths of Automatic Test Pattern Generators (ATPG), Formal Methods and Fault Injection Simulators we are able to automatically generate a Test Environment that enables the validation of the tools and provides supplementary information about the design behavior. Our results showed fault detection rates above 99% including information to improve ISO26262 metrics calculation