Numerical investigation into the effects of corrosion on the shear performance of pretensioned bridge girders with cast-in-place slabs

Journal Article (2022)
Author(s)

Magdalena Jadwiga Osmolska (Norwegian University of Science and Technology (NTNU), OsloMet – storbyuniversitetet)

Terje Kanstad (Norwegian University of Science and Technology (NTNU))

MAN Hendriks (Norwegian University of Science and Technology (NTNU), TU Delft - Concrete Structures)

Gro Markeset (OsloMet – storbyuniversitetet)

Research Group
Concrete Structures
Copyright
© 2022 Magdalena Jadwiga Osmolska, Terje Kanstad, M.A.N. Hendriks, Gro Markeset
DOI related publication
https://doi.org/10.1016/j.istruc.2022.10.129
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Magdalena Jadwiga Osmolska, Terje Kanstad, M.A.N. Hendriks, Gro Markeset
Research Group
Concrete Structures
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Volume number
46
Pages (from-to)
1447-1468
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Corrosion and shear cracking are frequently observed near supports of pretensioned bridge girders in coastal climates, so non-linear finite element analysis was used to study the effect of corrosion on shear performance in a real case study. Varying degrees of corrosion and various locations (top strands, bottom strands, vertical stirrups and girder-slab interface) were considered. The analyses included construction phases, concrete creep and shrinkage, and the effects of corrosion on the properties of prestressing and reinforcing steel, concrete, and the bond between concrete and reinforcement. The study shows that high (20%) corrosion in the bottom layer of strands can modify the failure mode from concrete crushing in the web to strand slippage or crushing of concrete in the support zone with limited cracking. Although severe strand corrosion significantly compromises girder capacity and ductility, failure occurs only when there is overloading. The predicted failure mode was also sensitive to material parameters, in particular the corrosion-induced crack widths used for modelling the reduced concrete strength. Nevertheless, some similarities were noticed between observed and predicted cracking occurrence. For moderate corrosion (10%), girder capacity was limited by strand fracture, but extensive flexure and shear cracking would appear before failure. 20% corrosion in the vertical stirrups in the web seems to have potentially smaller effect on the shear capacity than 20% corrosion in the strands in support, while corrosion in the top strands or stirrups in the girder-slab interface did not affect the girder capacity.

Files

1_s2.0_S235201242201027X_main.... (pdf)
(pdf | 21.8 Mb)
- Embargo expired in 12-05-2023
License info not available