Design and feasibility of a 30- to 40-knot emission-free ferry

Journal Article (2023)
Author(s)

Patryk Doornebos (Student TU Delft)

Moreno Francis (CoCo Yachts)

J.J. le Poole (TU Delft - Ship Design, Production and Operations)

Austin A. Kana (TU Delft - Ship Design, Production and Operations)

Research Group
Ship Design, Production and Operations
Copyright
© 2023 Patryk Doornebos, Moreno Francis, J.J. le Poole, A.A. Kana
DOI related publication
https://doi.org/10.3233/ISP-230005
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 Patryk Doornebos, Moreno Francis, J.J. le Poole, A.A. Kana
Research Group
Ship Design, Production and Operations
Issue number
2
Volume number
70
Pages (from-to)
81-114
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This paper explores the design and feasibility of a 200-passenger, 30- to 40-knot emission-free ferry as a potential variant of the traditionally powered Coastal Cruiser 200 ferry currently operating in the Chinese Pearl River Delta. The Pearl River Delta is one of China’s most densely urbanized regions and faces numerous social, health, and economic issues due to air pollution. In addition, globally, there are no currently-operating zero-emission ferries that, at minimum, sail at 30 knots and carry 200 passengers. To assess the feasibility of the new ferry, a two step approach was followed. First, an evaluation of efficiency improving measures, energy carriers, and propulsion systems was performed to assess the tradeoffs and identify early design choices. Second, to quantify the most technically feasible design, a technical parametric model was developed specifically for this case study. Results showed that the ferry is technically feasible using batteries, compressed hydrogen fuel cells, or liquid hydrogen fuel cells; however, each has its distinct advantages and disadvantages which influence the potential final viability. Despite the regional focus of the case study, results are applicable to all ferries with similar design requirements.