Semi-generative modelling
Covariate-shift adaptation with cause and effect features
Julius von Kügelgen (Max Planck Institute for Intelligent Systems, University of Cambridge)
Alexander Mey (Student TU Delft)
Marco Loog (TU Delft - Pattern Recognition and Bioinformatics, University of Copenhagen)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Current methods for covariate-shift adaptation use unlabelled data to compute importance weights or domain-invariant features, while the final model is trained on labelled data only. Here, we consider a particular case of covariate shift which allows us also to learn from unlabelled data, that is, combining adaptation with semi-supervised learning. Using ideas from causality, we argue that this requires learning with both causes, XC, and effects, XE, of a target variable, Y, and show how this setting leads to what we call a semi-generative model, P(Y,XE|XC,θ). Our approach is robust to domain shifts in the distribution of causal features and leverages unlabelled data by learning a direct map from causes to effects. Experiments on synthetic data demonstrate significant improvements in classification over purely-supervised and importance-weighting baselines.