The thermo-mechanical impact of long-term energy pile use
M. Rafai (University of Perugia, TU Delft - Geo-engineering)
Diana Salciarini (University of Perugia)
Philip J. Vardon (TU Delft - Geo-engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents quantitative data from a field test on a new type of energy pile, called a displacement cast in situ energy pile. The test pile was installed in a multilayered soft soils and subjected to a continuous cooling for 3 months, with no mechanical load. Afterwards, the pile was loaded to a specific target of 20 or 60 % of its calculated ultimate bearing capacity and then subjected to up to five thermal cycles. Under zero mechanical load, the results revealed that the compressive/tensile stresses coexist along the pile. Under low mechanical load (20 %), thermal cycles induced irreversible residual contractive strains and stresses as well as a limited pile head settlement. Under high mechanical load (60 %) and extreme operating conditions, i.e., negative temperatures which could have indicated a frozen interface, further irreversible settlements observed at the end of this test. Mechanical pile tests however indicated no impact of stress history (including the freezing test) on the shaft resistance and the overall pile-bearing capacity.