A single van der pol wake oscillator model for coupled cross-flow and in-line vortex-induced vibrations

Journal Article (2020)
Author(s)

Yang Qu (TU Delft - Offshore Engineering, Shanghai Jiao Tong University)

Andrei V. Metrikine (TU Delft - Engineering Structures, TU Delft - Offshore Engineering)

Research Group
Offshore Engineering
Copyright
© 2020 Y. Qu, A. Metrikine
DOI related publication
https://doi.org/10.1016/j.oceaneng.2019.106732
More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 Y. Qu, A. Metrikine
Research Group
Offshore Engineering
Volume number
196
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

In this study a new wake oscillator model is proposed to describe the coupled cross-flow and in-line vortex-induced vibrations of an elastically supported rigid cylinder. Different from many other studies where two wake oscillators have been applied, the current model uses only one wake oscillator coupled to both cross-flow and in-line motions. The new model is based on the van der Pol oscillator with the classic acceleration coupling between the wake and cross-flow motion, while the in-line motion is coupled with the wake variable in a nonlinear manner. The predictions of this new model are compared with the existing experimental data and shown to be in good agreement. In addition to the conventional lock-in range that corresponds to reduced velocities between 5 and 8, another lock-in is predicted around reduced velocity of 2.5 due to the in-line vibration. Most importantly, the new model is proved to be able to predict the appearance of the ‘super-upper’ branch at small mass ratios without changing the tuning parameters. The limitations of the model associated with unrealistic predictions of free vibrations with very small mass ratios and those of forced in-line vibrations at high frequencies are also discussed along with a possible remedy.

Files

Paper_revision.pdf
(pdf | 0.773 Mb)
- Embargo expired in 30-12-2021