Early Stopping Bayesian Optimization for Controller Tuning
David Stenger (RWTH Aachen University)
Dominik Scheurenberg (RWTH Aachen University)
H. Vallery (TU Delft - Biomechatronics & Human-Machine Control, RWTH Aachen University, Erasmus MC)
Sebastian Trimpe (RWTH Aachen University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Manual tuning of performance-critical controller parameters can be tedious and sub-optimal. Bayesian Optimization (BO) is an increasingly popular practical alternative to automatically optimize controller parameters from few experiments. Standard BO practice is to evaluate the closed-loop performance of parameters proposed during optimization on an episode with a fixed length. However, fixed-length episodes can be wasteful. For example, continuing an episode where already the start shows undesirable behavior such as strong oscillations seems pointless. Therefore, we propose a BO method that stops an episode early if suboptimality becomes apparent before an episode is completed. Such early stopping results in partial observations of the controller’s performance, which cannot directly be included in standard BO. We propose three heuristics to facilitate partially observed episodes in BO. Through five numerical and one hardware experiment, we demonstrate that early stopping BO can substantially reduce the time needed for optimization.
Files
File under embargo until 26-08-2025