HV
H. Vallery
84 records found
1
Adaptive motor control and seamless coordination of muscle actions in response to external perturbations are crucial to maintaining balance during bipedal locomotion. There is an ongoing debate about the specific roles of individual muscles and underlying neural control circuitry
...
Wind energy is one of the main renewable energy sources in the current energy transition. Due to ever more and ever larger wind turbines (WT), the requirements for WT operation become more complex. Model predictive control (MPC) for WTs shows the potential to handle these require
...
Manual tuning of performance-critical controller parameters can be tedious and sub-optimal. Bayesian Optimization (BO) is an increasingly popular practical alternative to automatically optimize controller parameters from few experiments. Standard BO practice is to evaluate the cl
...
Traditional wheelchairs are pushed from behind the occupant, which hinders eye contact and communication. It was proposed that the wheelchair be pushed from the side using a push bar to place the caregiver beside the occupant. However, this method requires the caregiver to exert
...
Direct biomechanical manipulation of human gait stability
A systematic review
People fall more often when their gait stability is reduced. Gait stability can be directly manipulated by exerting forces or moments onto a person, ranging from simple walking sticks to complex wearable robotics. A systematic review of the literature was performed to determine:
...
Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A p
...
Accurate and robust vehicle localization in highly urbanized areas is challenging. Sensors are often corrupted in those complicated and large-scale environments. This article introduces gnssFGO, a global and online trajectory estimator that fuses global navigation satellite syste
...
Angular momentum, kinetics, and energetics, including total mechanical energy and its rate of change in relation to power exchange, are important quantities when analyzing human motion in sports, physical labor, and rehabilitation. Inertial measurement units (IMU)-based motion ca
...
Background: Pneumatic actuators are widely used in applications like (medical) robots, or prostheses. Pneumatic actuators require a complex manufacturing process and are produced in standardized dimensions to reduce costs. Over the last decade 3D-printing has emerged as a cost-ef
...
Balance recovery after tripping often requires an active adaptation of foot placement. Thus far, few attempts have been made to actively assist forward foot placement for balance recovery employing wearable devices. This study aims to explore the possibilities of active forward f
...
Climate-controlled cabins have for decades been standard in vehicles.
Model Predictive Controllers (MPCs) have shown promising results in
achieving temperature tracking in vehicle cabins and may improve upon
model-free control performance. However, for the multi-zone climate
...
Three-dimensional (3D) cameras used for gait assessment obviate the need for bodily markers or sensors, making them particularly interesting for clinical applications. Due to their limited field of view, their application has predominantly focused on evaluating gait patterns with
...
Standing up using one leg is a challenging task for those with a transfemoral amputation, particularly for elderly users with a low activity level. Active prostheses are generally not accessible to this group and available passive prostheses do not support standing up. This artic
...
The global navigation satellite systems (GNSS) play a vital role in
transport systems for accurate and consistent vehicle localization.
However, GNSS observations can be distorted due to multipath effects and
non-line-of-sight (NLOS) receptions in challenging environments such
...
Light-Weight Wearable Gyroscopic Actuators Can Modulate Balance Performance and Gait Characteristics
A Proof-of-Concept Study
Falling is a major cause of morbidity, and is often caused by a decrease in postural stability. A key component of postural stability is whole-body centroidal angular momentum, which can be influenced by control moment gyroscopes. In this proof-of-concept study, we explore the in
...
Regaining the ability to walk overground, to climb stairs and to perform
other functional tasks such as standing up and sitting down are
important rehabilitation goals following neurological injury or disease.
However, these activities are often difficult to practice safely fo
...
Background: Falls are a common complication experienced after a stroke and can cause serious detriments to physical health and social mobility, necessitating a dire need for intervention. Among recent advancements, wearable airbag technology has been designed to detect and mitiga
...
Trunk motor control is essential for the proper functioning of the upper extremities and is an important predictor of gait capacity in children with delayed development. Early diagnosis and intervention could increase the trunk motor capabilities in later life, but current tools
...
Wearable Sensor-Based Real-Time Gait Detection
A Systematic Review
Gait analysis has traditionally been carried out in a laboratory environment using expensive equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into clinical applications as well as use during activities of daily living. Real-time gait a
...
Sensory-motor impairments due to age or neurological diseases can influence a person's ability to maintain balance, and increase the risk of falls. Recently, wearable Control Moment Gyroscopes (CMGs) have proven to provide effective balance support. Here, we show a new design of
...