On the identification of hypoxic regions in subject-specific cerebral vasculature by combined CFD/MRI

Journal Article (2023)
Author(s)

R. Perinajová (J.M. Burgers Centre for Fluid Mechanics, TU Delft - ChemE/Transport Phenomena)

P. van Ooij (Amsterdam UMC)

S. Kenjeres (TU Delft - ChemE/Transport Phenomena, J.M. Burgers Centre for Fluid Mechanics)

Research Group
ChemE/Transport Phenomena
Copyright
© 2023 R. Perinajová, Pim van Ooij, S. Kenjeres
DOI related publication
https://doi.org/10.1098/rsos.220645
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 R. Perinajová, Pim van Ooij, S. Kenjeres
Research Group
ChemE/Transport Phenomena
Issue number
1
Volume number
10
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

A long-time exposure to lack of oxygen (hypoxia) in some regions of the cerebrovascular system is believed to be one of the causes of cerebral neurological diseases. In the present study, we show how a combination of magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) can provide a noninvasive alternative for studying blood flow and transport of oxygen within the cerebral vasculature. We perform computer simulations of oxygen mass transfer in the subject-specific geometry of the circle of Willis. The computational domain and boundary conditions are based on four-dimensional (4D)-flow MRI measurements. Two different oxygen mass transfer models are considered: passive (where oxygen is treated as a dilute chemical species in plasma) and active (where oxygen is bonded to haemoglobin) models. We show that neglecting haemoglobin transport results in a significant underestimation of the arterial wall mass transfer of oxygen. We identified the hypoxic regions along the arterial walls by introducing the critical thresholds that are obtained by comparison of the estimated range of Damköhler number (Da, 〈9; 57〉) with the local Sherwood number. Finally, we recommend additional validations of the combined MRI/CFD approach proposed here for larger groups of subject- or patient-specific brain vasculature systems.