Rigid Airborne docking between a fixed-wing UAV and an over-actuated multicopter
J.J.E. Laffita van den Hove d'Ertsenryck (Student TU Delft)
Ewoud Smeur (TU Delft - Control & Simulation)
Bart Diane Walter Remes (TU Delft - Control & Simulation)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Fixed-wing aircraft fly longer, faster, and further than rotorcraft, but cannot take off or land vertically. Hybrid drones combine VTOL with a wing for forward flight, but the hovering system generally makes them less efficient than a pure fixed-wing. We propose an alternative, in which a rotorcraft is used to assist the fixed-wing UAV with the VTOL portions of the flight. This paper takes the first steps towards this alternative by developing and testing an overactuated rotorcraft that can autonomously dock onto a target at fixed-wing velocities. The control system uses Incremental Non-Linear Dynamic Inversion Control (INDI) to achieve linear accelerations with lateral and longitudinal motors, enabling robust horizontal control independent of attitude. A relative guidance algorithm for the docking approach path is presented, along with a vision sensing approach using ArUco markers and IR LEDs. Successful docking and separation were achieved in the wind tunnel at speeds of up to 15m/s.