Topological Phases without Crystalline Counterparts

Journal Article (2019)
Author(s)

Dániel Varjas (Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre, TU Delft - QRD/Kouwenhoven Lab)

Alexander Lau (TU Delft - QN/Akhmerov Group, Kavli institute of nanoscience Delft)

K.K. Pöyhönen (Kavli institute of nanoscience Delft, TU Delft - QuTech Advanced Research Centre, TU Delft - QRD/Wimmer Group)

A. R. Akhmerov (Kavli institute of nanoscience Delft, TU Delft - QN/Akhmerov Group)

Dmitry I. Pikulin (University of California)

Ion C. Fulga (IFW Dresden)

Research Group
QRD/Kouwenhoven Lab
Copyright
© 2019 D. Varjas, A. Lau, K.K. Pöyhönen, A.R. Akhmerov, Dmitry I. Pikulin, Ion Cosma Fulga
DOI related publication
https://doi.org/10.1103/PhysRevLett.123.196401
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 D. Varjas, A. Lau, K.K. Pöyhönen, A.R. Akhmerov, Dmitry I. Pikulin, Ion Cosma Fulga
Research Group
QRD/Kouwenhoven Lab
Issue number
19
Volume number
123
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We construct a two-dimensional higher-order topological phase protected by a quasicrystalline eightfold rotation symmetry. Our tight-binding model describes a superconductor on the Ammann-Beenker tiling hosting localized Majorana zero modes at the corners of an octagonal sample. In order to analyze this model, we introduce Hamiltonians generated by a local rule, and use this concept to identify the bulk topological properties. We find a Z2 bulk topological invariant protecting the corner modes. Our work establishes that there exist topological phases protected by symmetries impossible in a crystal.