Glycosaminoglycan-Mediated Interactions in Articular, Auricular, Meniscal, and Nasal Cartilage
Manula S.B. Rathnayake (University of Melbourne)
Manuela A. Boos (University of Melbourne)
Brooke L. Farrugia (University of Melbourne)
Gerjo J.V.M. van Osch (Erasmus MC, TU Delft - Biomaterials & Tissue Biomechanics)
Kathryn S. Stok (University of Melbourne)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Glycosaminoglycans (GAGs) are ubiquitous components in the cartilage extracellular matrix (ECM). Ultrastructural arrangement of ECM and GAG-mediated interactions with collagen are known to govern the mechanics in articular cartilage, but these interactions are less clear in other cartilage types. Therefore, this article reviews the current literature on ultrastructure of articular, auricular, meniscal, and nasal septal cartilage, seeking insight into GAG-mediated interactions influencing mechanics. Ultrastructural features of these cartilages are discussed to highlight differences between them. GAG-mediated interactions are reviewed under two categories: interactions with chondrocytes and interactions with other fibrillar macromolecules of the ECM. Moreover, efforts to replicate GAG-mediated interactions to improve mechanical integrity of tissue-engineered cartilage constructs are discussed. In conclusion, studies exploring cartilage specific GAGs are poorly represented in the literature, and the ultrastructure of nasal septal and auricular cartilage is less studied compared with articular and meniscal cartilages. Understanding the contribution of GAGs in cartilage mechanics at the ultrastructural level and translating that knowledge to engineered cartilage will facilitate improvement of cartilage tissue engineering approaches.