Circular Image

G.J.V.M. van Osch

34 records found

Osteoarthritis (OA) is a common disabling disease for which no effective pharmacological therapy exists. The progression of osteoarthritis is characterized by the loss of homeostasis in the cartilage. Since in the early stages of the disease, a phenotypic switch is seen in which ...
Additively manufactured (AM) iron (Fe)-based scaffolds have been developed as promising biodegradable bone-substituting biomaterials. Multi-material extrusion-based 3D printing has recently yielded Fe-manganese (Mn) alloy-based scaffolds that can resolve ferromagnetism and cytoto ...
Tissue engineering approaches for cartilage tissue regeneration are expanding to include the complex features of the tissue, such as the biological and mechanical gradients. Many of these approaches are, however, based on the use of multiple biomaterials or concentrations, and cr ...
The existing 3D printing methods exhibit certain fabrication-dependent limitations for printing curved constructs that are relevant for many tissues. Four-dimensional (4D) printing is an emerging technology that is expected to revolutionize the field of tissue engineering and reg ...
Low-grade inflammation and pathological endochondral ossification are key processes underlying the progression of osteoarthritis, the most prevalent joint disease worldwide. In this study, we employed a multi-faceted approach, integrating publicly available datasets, in silico an ...
Glycosaminoglycans (GAGs) are ubiquitous components in the cartilage extracellular matrix (ECM). Ultrastructural arrangement of ECM and GAG-mediated interactions with collagen are known to govern the mechanics in articular cartilage, but these interactions are less clear in other ...
Osteochondral defect repair with a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold has demonstrated good clinical results. However, subchondral bone repair remained suboptimal, potentially leading to damage to the regenerated overlying neocartilage. This stud ...
Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by ...
Bone-to-soft tissue interfaces are responsible for transferring loads between tissues with significantly dissimilar material properties. The examples of connective soft tissues are ligaments, tendons, and cartilages. Such natural tissue interfaces have unique microstructural prop ...
As a highly specialized shock-absorbing connective tissue, articular cartilage (AC) has very limited self-repair capacity after traumatic injuries, posing a heavy socioeconomic burden. Common clinical therapies for small- to medium-size focal AC defects are well-developed endogen ...
Osteochondral lesions, when not properly treated, may evolve into osteoarthritis (OA), especially in the elderly population, where altered joint function and quality are usual. To date, a collagen/collagen–magnesium–hydroxyapatite (Col/Col-Mg-HAp) scaffold (OC) has demonstrated g ...
Bone Morphogenetic proteins (BMPs) like BMP2 and BMP7 have shown great potential in the treatment of severe bone defects. In recent in vitro studies, BMP9 revealed the highest osteogenic potential compared to other BMPs, possibly due to its unique signaling pathways that differs ...
Tissue engineering bone via endochondral ossification requires the generation of a cartilage template which undergoes vascularisation and remodelling. While this is a promising route for bone repair, achieving effective cartilage vascularisation remains a challenge. Here, we inve ...
Introduction: Mesenchymal stromal/progenitor cells (MSCs) are promising for cartilage cell-based therapies due to their chondrogenic differentiation capacity. However, MSCs can become senescent during in vitro expansion, a state characterized by stable cell cycle arrest, metaboli ...
Living organisms use functional gradients (FGs) to interface hard and soft materials (e.g., bone and tendon), a strategy with engineering potential. Past attempts involving hard (or soft) phase ratio variation have led to mechanical property inaccuracies because of microscale-mat ...
Background: The use of acellular hydrogels to repair osteochondral defects requires cells to first invade the biomaterial and then to deposit extracellular matrix for tissue regeneration. Due to the diverse physicochemical properties of engineered hydrogels, the specific properti ...
Neutrophils play a pivotal role in orchestrating the immune system response to biomaterials, the onset and resolution of chronic inflammation, and macrophage polarization. However, the neutrophil response to biomaterials and the consequent impact on tissue engineering approaches ...
Articular cartilage (AC) is an avascular and flexible connective tissue located on the bone surface in the diarthrodial joints. AC defects are common in the knees of young and physically active individuals. Because of the lack of suitable tissue-engineered artificial matrices, cu ...
Background and purpose: Corticosteroids such as triamcinolone acetonide (TAA) are potent drugs administered intra-articularly as an anti-inflammatory therapy to relieve pain associated with osteoarthritis (OA). However, the ability of early TAA intervention to mitigate OA progres ...