EF

E.L. Fratila-Apachitei

152 records found

While conventionally manufactured metallic biomaterials can hardly meet all the requirements for bone implants including complex geometry, exact dimensions, adequate biodegradability, bone-matching mechanical properties, and biological function, two additional tools have recently ...
Medical devices contribute to the carbon footprint generated by the healthcare sector. The development of implants and biomaterials using recycled waste materials promotes sustainable advances in tissue engineering. Additively manufactured (AM) bone-substituting biomaterials with ...
High-performance soft–hard interfaces are inherently difficult to fabricate due to the dissimilar mechanical properties of both materials, especially when connecting extremely soft biomaterials, such as hydrogels, to much harder biomaterials, such as rigid polymers. Nevertheless, ...
Titanium surfaces featuring high-aspect ratio (HAR) nanopillars can have antimicrobial and osteogenic properties. Nevertheless, the impact of these surfaces on immune cells and their potential for immunomodulation remain unclear. In this study, the effects of HAR titanium nanopil ...
Additively manufactured (AM) iron (Fe)-based scaffolds have been developed as promising biodegradable bone-substituting biomaterials. Multi-material extrusion-based 3D printing has recently yielded Fe-manganese (Mn) alloy-based scaffolds that can resolve ferromagnetism and cytoto ...
The development of high-fidelity three-dimensional (3D) tissue models can minimize the need for animal models in clinical medicine and drug development. However, physical limitations regarding the distances within which diffusion processes are effective impose limitations on the ...
The Poisson's ratio and elastic modulus are two parameters determining the elastic behavior of biomaterials. While the effects of elastic modulus on the cell response is widely studied, very little is known regarding the effects of the Poisson's ratio. The micro-architecture of m ...
The existing 3D printing methods exhibit certain fabrication-dependent limitations for printing curved constructs that are relevant for many tissues. Four-dimensional (4D) printing is an emerging technology that is expected to revolutionize the field of tissue engineering and reg ...
This study proposes a new concept for an on-demand drug releasing device intended for integration into additively manufactured (i.e., 3D printed) orthopedic implants. The system comprises a surface with conduits connected to a subsurface reservoir used for storage and on-demand r ...
The antibacterial biofunctionality of bone implants is essential for the prevention and treatment of implant-associated infections (IAI). In vitro co-culture models are utilized to assess this and study bacteria-host cell interactions at the implant interface, aiding our understa ...
The currently available treatments for inner ear disorders often involve systemic drug administration, leading to suboptimal drug concentrations and side effects. Cochlear implants offer a potential solution by providing localized and sustained drug delivery to the cochlea. While ...
Durable interfacing of hard and soft materials is a major design challenge caused by the ensuing stress concentrations. In nature, soft-hard interfaces exhibit remarkable mechanical performance, with failures rarely happening at the interface. Here, we mimic the strategies observ ...
Additively manufactured (AM) porous titanium implants may have an increased risk of implant-associated infection (IAI) due to their huge internal surfaces. However, the same surface, when biofunctionalized, can be used to prevent IAI. Here, we used a rat implant infection model t ...
Hearing loss is a highly prevalent multifactorial disorder affecting 20% of the global population. Current treatments using the systemic administration of drugs are therapeutically ineffective due to the anatomy of the cochlea and the existing blood–labyrinth barrier. Local drug ...
The development of biodegradable Fe-based bone implants has rapidly progressed in recent years. Most of the challenges encountered in developing such implants have been tackled individually or in combination using additive manufacturing technologies. Yet not all the challenges ha ...
Living organisms use functional gradients (FGs) to interface hard and soft materials (e.g., bone and tendon), a strategy with engineering potential. Past attempts involving hard (or soft) phase ratio variation have led to mechanical property inaccuracies because of microscale-mat ...
Macrophage responses following the implantation of orthopaedic implants are essential for successful implant integration in the body, partly through intimate crosstalk with human marrow stromal cells (hMSCs) in the process of new bone formation. Additive manufacturing (AM) and pl ...
Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients acro ...
Developing high-throughput nanopatterning techniques that also allow for precise control over the dimensions of the fabricated features is essential for the study of cell-nanopattern interactions. Here, we developed a process that fulfills both of these criteria. Firstly, we used ...
Additively manufacturing of porous iron offers a unique opportunity to increase its biodegradation rate by taking advantage of arbitrarily complex porous structures. Nevertheless, achieving the required biodegradation profile remains challenging due to the natural passivation of ...