AZ

A.A. Zadpoor

342 records found

Existing deep learning (DL) networks are primarily trained on adult datasets and may not always generalize to pediatric populations, where growth plays a major role. Here, we investigated improving semantic segmentation outcomes of pediatric hand phalanges from radiographs withou ...
The authors regret that the affiliation of Joseph Ahn was incorrectly listed in the original article. The correct affiliation is:

Independent Researcher, Hwaseong-si, South Korea

This error has now been corrected in the online version of the article.

Th ...
High-performance soft–hard interfaces are inherently difficult to fabricate due to the dissimilar mechanical properties of both materials, especially when connecting extremely soft biomaterials, such as hydrogels, to much harder biomaterials, such as rigid polymers. Nevertheless, ...
Effective treatment of large acetabular defects remains among the most challenging aspects of revision total hip arthroplasty (THA), due to the deficiency of healthy bone stock and degradation of the support columns. Generic uncemented components, which are favored in primary THA ...
Emerging 4D printing techniques have enabled the realization of smart materials whose shape or properties can change with time. Two important phenomena play important roles in the 4D printing of shape memory polymeric materials. First, the anisotropic deformation of the printed f ...
Additively manufactured (AM) biodegradable porous iron-manganese (FeMn) alloys have recently been developed as promising bone-substituting biomaterials. However, their corrosion fatigue behavior has not yet been studied. Here, we present the first study on the corrosion fatigue b ...
Temporomandibular joint (TMJ) replacement prostheses often face limitations in accommodating translational movements, leading to unnatural kinematics and loading conditions, which affect functionality and longevity. Here, we investigate the potential of functionally graded materi ...
The Poisson's ratio and elastic modulus are two parameters determining the elastic behavior of biomaterials. While the effects of elastic modulus on the cell response is widely studied, very little is known regarding the effects of the Poisson's ratio. The micro-architecture of m ...
The existing 3D printing methods exhibit certain fabrication-dependent limitations for printing curved constructs that are relevant for many tissues. Four-dimensional (4D) printing is an emerging technology that is expected to revolutionize the field of tissue engineering and reg ...
The antibacterial biofunctionality of bone implants is essential for the prevention and treatment of implant-associated infections (IAI). In vitro co-culture models are utilized to assess this and study bacteria-host cell interactions at the implant interface, aiding our understa ...
Meta-biomaterials, engineered materials with distinctive combinations of mechanical, physical, and biological properties stemming from their micro-architecture, have emerged as a promising domain within biomedical engineering. Correspondingly, meta-implants, which serve as the de ...
The currently available treatments for inner ear disorders often involve systemic drug administration, leading to suboptimal drug concentrations and side effects. Cochlear implants offer a potential solution by providing localized and sustained drug delivery to the cochlea. While ...
Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. W ...
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D ...
This study proposes a new concept for an on-demand drug releasing device intended for integration into additively manufactured (i.e., 3D printed) orthopedic implants. The system comprises a surface with conduits connected to a subsurface reservoir used for storage and on-demand r ...
Shape morphing is the ability of objects to adapt to different shapes and reduce stress concentrations through increased contact area. This is a common trait of natural and engineered objects and has several applications in, among others, soft robotics and orthopedic implants. Sh ...
Macrophage responses following the implantation of orthopaedic implants are essential for successful implant integration in the body, partly through intimate crosstalk with human marrow stromal cells (hMSCs) in the process of new bone formation. Additive manufacturing (AM) and pl ...
Mechanical and morphological design parameters, such as stiffness or porosity, play important roles in creating orthopedic implants and bone substitutes. However, we have only a limited understanding of how the microarchitecture of porous scaffolds contributes to bone regeneratio ...
Additive manufacturing (AM) technologies, particularly those based on powder bed fusion (PBF), most notably, selective laser melting (SLM) for metals, have in recent years emerged as unique fabrication methods for patient-specific implants made of metals and their alloys. The abi ...
Objective: To examine the association between 3D patellar shape and 1) isolated magnetic resonance imaging (MRI)-based patellofemoral osteoarthritis (PFOA), 2) the morphological features of PFOA, and 3) the clinical symptoms of PFOA. Design: MRI data from 66 women with isolated M ...