P.G. Steeneken
119 records found
1
High-frequency acoustic devices based on two-dimensional (2D) materials are emerging platforms to design and manipulate the spatiotemporal response of acoustic waves for next-generation sensing and contactless actuation applications. Conventional actuation methods, however, canno
...
Current temperature sensors require regular recalibration to maintain reliable temperature measurement. Photonic/quantum-based approaches have the potential to radically change the practice of thermometry through provision of in situ traceability, potentially through practical pr
...
Ultrasound is widely used in medical imaging, and emerging photo-acoustic imaging is crucial for disease diagnosis. Currently, high-end photo-acoustic imaging systems rely on piezo-electric materials for detecting ultrasound waves, which come with sensitivity, noise, and bandwidt
...
Schlieren imaging is a widely applied optical technique for visualizing small refractive index changes in transparent media. An emerging application of schlieren is real-time monitoring and optimization of ultrasound pressure fields for acoustic levitation applications. However,
...
Crystal defects in hexagonal boron nitride (hBN) are emerging as versatile nanoscale optical probes with a wide application profile, spanning the fields of nanophotonics, biosensing, bioimaging, and quantum information processing. However, generating these crystal defects as reli
...
Nanomechanical resonances of two-dimensional (2D) materials are sensitive probes for condensedmatter physics, offering new insights into magnetic and electronic phase transitions. Despite extensive research, the influence of the spin dynamics near a phase transition on the nonlin
...
A quantitative understanding of the microscopic mechanisms responsible for damping in van der Waals nanomechanical resonators remains elusive. In this work, we investigate van der Waals magnets, where the thermal expansion coefficient exhibits an anomaly at the magnetic phase tra
...
Nonlinear dynamic simulations of mechanical resonators have been facilitated by the advent of computational techniques that generate nonlinear reduced order models (ROMs) using the finite element (FE) method. However, designing devices with specific nonlinear characteristics rema
...
Accurate localization and delivery of biomolecules are pivotal for building tools to understand biology. The interactions of biomolecules with atomically flat 2D surfaces offer a means to realize both the localization and delivery, yet experimental utilization of such interaction
...
The unique properties of two-dimensional (2D) materials bring great promise to improve sensor performance and realise novel sensing principles. However, to enable their high-volume production, wafer-scale processes that allow integration with electronic readout circuits need to b
...
Since the performance of micro-electro-mechanical system (MEMS)-based microphones is approaching fundamental physical, design, and material limits, it has become challenging to improve them. Several works have demonstrated graphene’s suitability as a microphone diaphragm. The pot
...
As a consequence of their high strength, small thickness, and high flexibility, ultrathin graphene membranes show great potential for pressure and sound sensing applications. This study investigates the performance of multi-layer graphene membranes for microphone applications in
...
Although strain engineering and soft-clamping techniques for attaining high Q-factors in nanoresonators have received much attention, their impact on nonlinear dynamics is not fully understood. In this study, we show that nonlinearity of high-Q Si3N4 nanomec
...
Introductory Dynamics
2D Kinematics and Kinetics of Point Masses and Rigid Bodies, Edition 1.1
Motion is all around us, the universe is full of moving matter and this motion is surprisingly predictable. The field of science and engineering that studies time-dependent motion in the presence of forces is called Dynamics. In this book we will introduce the core concepts in dy
...
Correction to
Highly-sensitive wafer-scale transfer-free graphene MEMS condenser microphones (Microsystems & Nanoengineering, (2024), 10, 1, (27), 10.1038/s41378-024-00656-x)
Correction to: Microsystems & Nanoengineering https://doi.org/10.1038/s41378-024-00656-x published online 21 February 2024 After publication of this article1, it was brought to our attention that two pressure values were not correctly copied from the submitted orig
...
Multi-material direct ink writing (DIW) of smart materials opens new possibilities for manufacturing complex-shaped structures with embedded sensing and actuation capabilities. In this study, DIW of UV-curable piezoelectric actuators is developed, which do not require high-temper
...
Suspended drums made of 2D materials hold potential for sensing applications. However, the industrialization of these applications is hindered by significant device-to-device variations presumably caused by non-uniform stress distributions induced by the fabrication process. Here
...
High-aspect-ratio mechanical resonators are pivotal in precision sensing, from macroscopic gravitational wave detectors to nanoscale acoustics. However, fabrication challenges and high computational costs have limited the length-to-thickness ratio of these devices, leaving a larg
...
Heat transport in two dimensions is fundamentally different from that in three dimensions. As a consequence, the thermal properties of 2D materials are of great interest, from both scientific and application points of view. However, few techniques are available for the accurate d
...
The high susceptibility of ultrathin two-dimensional (2D) material resonators to force and temperature makes them ideal systems for sensing applications and exploring thermomechanical coupling. Although the dynamics of these systems at high stress has been thoroughly investigated
...