G.J. Verbiest
33 records found
1
The unique properties of two-dimensional (2D) materials bring great promise to improve sensor performance and realise novel sensing principles. However, to enable their high-volume production, wafer-scale processes that allow integration with electronic readout circuits need to b
...
High-frequency acoustic devices based on two-dimensional (2D) materials are emerging platforms to design and manipulate the spatiotemporal response of acoustic waves for next-generation sensing and contactless actuation applications. Conventional actuation methods, however, canno
...
Accurate localization and delivery of biomolecules are pivotal for building tools to understand biology. The interactions of biomolecules with atomically flat 2D surfaces offer a means to realize both the localization and delivery, yet experimental utilization of such interaction
...
Schlieren imaging is a widely applied optical technique for visualizing small refractive index changes in transparent media. An emerging application of schlieren is real-time monitoring and optimization of ultrasound pressure fields for acoustic levitation applications. However,
...
Acoustic levitation is an attractive and versatile technique that offers several advantages in terms of particle size, range, reconfigurability, and ease of use with respect to alternative levitating techniques. In this paper, we study the use of active damping to improve the res
...
Most microphones detect sound-pressure-induced motion of a membrane. In contrast, we introduce a microphone that operates by monitoring sound-pressure-induced modulation of the air compressibility. By driving a graphene membrane at resonance, the gas, that is trapped in a squeeze
...
Heat transport in two dimensions is fundamentally different from that in three dimensions. As a consequence, the thermal properties of 2D materials are of great interest, from both scientific and application points of view. However, few techniques are available for the accurate d
...
Suspended drums made of 2D materials hold potential for sensing applications. However, the industrialization of these applications is hindered by significant device-to-device variations presumably caused by non-uniform stress distributions induced by the fabrication process. Here
...
The high susceptibility of ultrathin two-dimensional (2D) material resonators to force and temperature makes them ideal systems for sensing applications and exploring thermomechanical coupling. Although the dynamics of these systems at high stress has been thoroughly investigated
...
Resonators based on two-dimensional (2D) materials have exceptional properties for application as nanomechanical sensors, which allows them to operate at high frequencies with high sensitivity. However, their performance as nanomechanical sensors is currently limited by their low
...
Microphones exploit the motion of suspended membranes to detect sound waves. Since the microphone performance can be improved by reducing the thickness and mass of its sensing membrane, graphene-based microphones are expected to outperform state-of-the-art microelectromechanical
...
Atomic layer deposition (ALD), a layer-by-layer controlled method to synthesize ultrathin materials, provides various merits over other techniques such as precise thickness control, large area scalability and excellent conformality. Here we demonstrate the possibility of using AL
...
A low-cost glass-based microfluidic flow cell with a piezo actuator is built using off-the-shelf parts (total cost €9 per device) to apply acoustophoretic force on polystyrene micro-beads. The main challenge in the fabrication of these devices was to ensure their leak tightness,
...
Conoscopic interferometry is a promising detection technique for ultrafast acoustics. By focusing a probe beam through a birefringent crystal before passing it through a polarizer, conoscopic interferences sculpt the spatial profile of the beam. The use of these patterns for acou
...
Heat transport by acoustic phonons in two-dimensional (2D) materials is fundamentally different from that in 3D crystals because the out-of-plane phonons propagate in a unique way that strongly depends on tension and bending rigidity. Here, using optomechanical techniques, we exp
...
Fluid flow processes such as drainage and evaporation in porous media are crucial in geological and biological systems. The motion of the displacement front of a moving fluid through multi-phase interfaces is often associated with abrupt mechanical energy release, detectable as a
...
We propose to use the State Estimation by Sum-of-Norms Regularisation (STATESON-)algorithm for recovering the tip-sample interaction in high-speed tapping mode atomic force microscopy (AFM). This approach enables accurate sample height estimation for each independent cantilever o
...
To better understand the interactions between biological molecules, a high optical resolution in all three dimensions is crucial. The intrinsically lower axial resolution of microscopes however, is a limiting factor in fluorescence imaging, correspondingly in fluorescence based s
...
The resonance frequency of ultra-thin layered nanomaterials changes nonlinearly with the tension induced by the pressure from the surrounding gas. Although the dynamics of pressurized nanomaterial membranes have been extensively explored, recent experimental observations show sig
...
Sensors in agriculture
Towards an Internet of Plants
To ensure a sustainable future and combat food scarcity, we must boost agricultural productivity, improve climate resilience and optimize resource usage. There is untapped potential for dense wireless sensor networks in agriculture that can increase yields and support resilient p
...