Authored

20 records found

FRETboard

Semisupervised classification of FRET traces

Förster resonance energy transfer (FRET) is a useful phenomenon in biomolecular investigations, as it can be leveraged for nanoscale measurements. The optical signals produced by such experiments can be analyzed by fitting a statistical model. Several software tools exist to fit ...
Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambigu ...
Single-molecule FRET is a versatile tool to study nucleic acids and proteins at the nanometer scale. However, currently, only a couple of FRET pairs can be reliably measured on a single object, which makes it difficult to apply single-molecule FRET for structural analysis of biom ...
The inherent properties of 2D materials—light mass, high out-of-plane flexibility, and large surface area—promise great potential for precise and accurate nanomechanical mass sensing, but their application is often hampered by surface contamination. Here we demonstrate a tri-laye ...
The three-dimensional organization of DNA is increasingly understood to play a decisive role in vital cellular processes. Many studies focus on the role of DNA-packaging proteins, crowding, and confinement in arranging chromatin, but structural information might also be directly ...
Centromere-specific nucleosomes are a central feature of the kinetochore complex during mitosis, in which microtubules exert pulling and pushing forces upon the centromere. CENP-A nucleosomes have been assumed to be structurally unique, thereby providing resilience under tension ...
DNA supercoiling crucially affects cellular processes such as DNA replication, gene expression, and chromatin organization. However, mechanistic understanding of DNA supercoiling and the related DNA-processing enzymes has remained limited, mainly due to the lack of convenient exp ...
Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting protein ...
Single-molecule fluorescence experiments allow monitoring of the structural change and dynamics of a single biomolecule in real time using dye molecules attached to the molecule. Often, the molecules are immobilized on the surface to observe a longer molecular dynamics, yet the f ...
Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule prot ...
Nucleosomes form the unit structure of the genome in eukaryotes, thereby constituting a fundamental tenet of chromatin biology. In canonical nucleosomes, DNA wraps around the histone octamer in a left-handed toroidal ramp. Here, in single-molecule magnetic tweezers studies of cha ...
DNA cyclization assay together with single-molecule FRET was employed to monitor protein-mediated bending of a short dsDNA (~ 100 bp). This method provides a simple and easy way to monitor the structural change of DNA in real-time without necessitating prior knowledge of the mole ...
At the core of homologous DNA repair, RecA catalyzes the strand exchange reaction. This process is initiated by a RecA loading protein, which nucleates clusters of RecA proteins on single-stranded DNA. Each cluster grows to cover the single-stranded DNA but may leave 1- to 2-nucl ...
Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental ...
Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental ...